Understanding Control Groups for Research

Setting up a rigorous experiment is essential to ensuring its results are scientifically valid. Read more about the role of the control group in scientific experiments in this article.
Lauren Stewart
Qualitative Data Analysis Expert & ATLAS.ti Professional
  1. Introduction
  2. What are control groups in research?
  3. Examples of control groups in research
  4. Control group vs. experimental group
  5. Types of control groups
  6. Control groups in non-experimental research


A control group is typically thought of as the baseline in an experiment. In an experiment, clinical trial, or other sort of controlled study, there are at least two groups whose results are compared against each other.

The experimental group receives some sort of treatment, and their results are compared against those of the control group, which is not given the treatment. This is important to determine whether there is an identifiable causal relationship between the treatment and the resulting effects.

As intuitive as this may sound, there is an entire methodology that is useful to understanding the role of the control group in experimental research and as part of a broader concept in research. This article will examine the particulars of that methodology so you can design your research more rigorously.

Control groups are primarily used in experimental research to provide a baseline for understanding the effects of a treatment or intervention.

What are control groups in research?

Suppose that a friend or colleague of yours has a headache. You give them some over-the-counter medicine to relieve some of the pain. Shortly after they take the medicine, the pain is gone and they feel better. In casual settings, we can assume that it must be the medicine that was the cause of their headache going away.

In scientific research, however, we don't really know if the medicine made a difference or if the headache would have gone away on its own. Maybe in the time it took for the headache to go away, they ate or drank something that might have had an effect. Perhaps they had a quick nap that helped relieve the tension from the headache. Without rigorously exploring this phenomenon, any number of confounding factors exist that can make us question the actual efficacy of any particular treatment.

Experimental research relies on observing differences between the two groups by "controlling" the independent variable, or in the case of our example above, the medicine that is given or not given depending on the group. The dependent variable in this case is the change in how the person suffering the headache feels, and the difference between taking and not taking the medicine is evidence (or lack thereof) that the treatment is effective.

The catch is that, between the control group and other groups (typically called experimental groups), it's important to ensure that all other factors are the same or at least as similar as possible. Things such as age, fitness level, and even occupation can affect the likelihood someone has a headache and whether a certain medication is effective.

Faced with this dynamic, researchers try to make sure that participants in their control group and experimental group are as similar as possible to each other, with the only difference being the treatment they receive.

Examples of control groups in research

Experimental research is often associated with scientists in lab coats holding beakers containing liquids with funny colors. Clinical trials that deal with medical treatments rely primarily, if not exclusively, on experimental research designs involving comparisons between control and experimental groups.

However, many studies in the social sciences also employ some sort of experimental design which calls for the use of control groups. This type of research is useful when researchers are trying to confirm or challenge an existing notion or measure the difference in effects.

Workplace efficiency research

How might a company know if an employee training program is effective? They may decide to pilot the program to a small group of their employees before they implement the training to their entire workforce.

If they adopt an experimental design, they could compare results between an experimental group of workers who participate in the training program against a control group who continues as per usual without any additional training.

Employee training is one possible subject for an experimental study, with the experimental treatment being a new training program. Photo by Desola Lanre-Ologun.

Mental health research

Music certainly has profound effects on psychology, but what kind of music would be most effective for concentration? Here, a researcher might be interested in having participants in a control group perform a series of tasks in an environment with no background music, and participants in multiple experimental groups perform those same tasks with background music of different genres. The subsequent analysis could determine how well people perform with classical music, jazz music, or no music at all in the background.

Educational research

Suppose that you want to improve reading ability among elementary school students, and there is research on a particular teaching method that is associated with facilitating reading comprehension. How do you measure the effects of that teaching method?

A study could be conducted on two groups of otherwise equally proficient students to measure the difference in test scores. The teacher delivers the same instruction to the control group as they have to previous students, but they teach the experimental group using the new technique. A reading test after a certain amount of instruction could determine the extent of effectiveness of the new teaching method.

The control group in educational research is often a group of students as study participants. Photo by Jerry Wang.

Control group vs. experimental group

As you can see from the three examples above, experimental groups are the counterbalance to control groups. A control group offers an essential point of comparison. For an experimental study to be considered credible, it must establish a baseline against which novel research is conducted.

Researchers can determine the makeup of their experimental and control groups from their literature review. Remember that the objective of a review is to establish what is known about the object of inquiry and what is not known. Where experimental groups explore the unknown aspects of scientific knowledge, a control group is a sort of simulation of what would happen if the treatment or intervention was not administered. As a result, it will benefit researchers to have a foundational knowledge of the existing research to create a credible control group against which experimental results are compared, especially in terms of remaining sensitive to relevant participant characteristics that could confound the effects of your treatment or intervention so that you can appropriately distribute participants between the experimental and control groups.

Types of control groups

There are multiple control groups to consider depending on the study you are looking to conduct. All of them are variations of the basic control group used to establish a baseline for experimental conditions.

No-treatment control group

This kind of control group is common when trying to establish the effects of an experimental treatment against the absence of treatment. This is arguably the most straightforward approach to an experimental design as it aims to directly demonstrate how a certain change in conditions produces an effect.

Placebo control group

In this case, the control group receives some sort of treatment under the exact same procedures as those in the experimental group. The only difference in this case is that the treatment in the placebo control group has already been judged to be ineffective, except that the research participants don't know that it is ineffective.

Placebo control groups (or negative control groups) are useful for allowing researchers to account for any psychological or affective factors that might impact the outcomes. The negative control group exists to explicitly eliminate factors other than changes in the independent variable conditions as causes of the effects experienced in the experimental group.

Positive control group

Contrasted with a no-treatment control group, a positive control group employs a treatment against which the treatment in the experimental group is compared. However, unlike in a placebo group, participants in a positive control group receive treatment that is known to have an effect.

If we were to use our first example of headache medicine, a researcher could compare results between medication that is commonly known as effective against the newer medication that the researcher thinks is more effective. Positive control groups are useful for validating experimental results when compared against familiar results.

Historical control group

Rather than study participants in control group conditions, researchers may employ existing data to create historical control groups. This form of control group is useful for examining changing conditions over time, particularly when incorporating past conditions that can't be replicated in the analysis.

Control groups in non-experimental research

Qualitative research more often relies on non-experimental research such as observations and interviews to examine phenomena in their natural environments. This sort of research is more suited for inductive and exploratory inquiries, not confirmatory studies meant to test or measure a phenomenon.

That said, the broader concept of a control group is still present in observational and interview research in the form of a comparison group. Comparison groups are used in qualitative research designs to show differences between phenomena, with the exception being that there is no baseline against which data is analyzed.

Comparison groups are useful when an experimental environment cannot produce results that would be applicable to real-world conditions. Research inquiries examining the social world face challenges of having too many variables to control, making observations and interviews across comparable groups more appropriate for data collection than clinical or sterile environments.

Rather than rely on a controlled experiment, exploratory studies employing comparison groups draw conclusions from the natural environment. Photo by Phil Mosley.